General Atomics and Its Affiliates Unite in Fight Against COVID-19

LinkedIn
face shields in boxes

As the U.S. and the world take on the challenge of combating the novel coronavirus, General Atomics (GA) and its affiliates are leveraging their expertise in manufacturing and innovation to meet the urgent needs of our communities.

At GA facilities in San Diego and across the country, test kit development, 3D printing of Personal Protective Equipment (PPE) and ventilator component manufacturing are underway to assist in the fight against COVID-19 at a local, state and national level.

 

  • GA, Diazyme is offering a COVID-19 Antibody test from blood draws (serum or plasma). Under the FDA’s policy for Public Health Emergency for COVID-19, Diazyme utilized the notification process as outlined in Section IVD of the policy and is now listed on the FDA’s FAQ site dedicated to serological (Antibody) testing. The Diazyme’s sensitive test is run on a fully-automated Diazyme DZ-Lite 3000 chemiluminescence analyzer. Diazyme is already working with multiple clinical laboratories around the country, including the UCSD Medical Center to perform these serological tests. Serological tests are not for sole diagnosis of the COVID-19 disease but are valuable in understanding community spread of the disease.
  • Diazyme has also notified the FDA of a rapid COVID-19 Antibody test. This point-of-care test requires only a single drop of blood and provides results within 10-15 minutes. Rapid tests tend to be less sensitive than the lab run tests but are easy to use and can be performed at the point-of-care (doctor’s office, community clinics) and is useful in identifying people who may have been exposed to COVID-19, as well as those who have already recovered, but were unaware that they had been infected.
  • More information about Diazyme’s tests including regulatory statutory statements can be found at http://www.diazyme.com/dz-lite-sars-cov-2
  • GA, Electromagnetic Systems (GA-EMS) group is pursuing component manufacturing and integration services to help scale up production of ventilators. With extensive manufacturing facilities located across the U.S., GA-EMS provides a convenient, US-sourced option to help companies rapidly increase their production capacity to meet the high demand for critical medical equipment. GA-EMS has also tested their first generation mechanized bag valve mask. The system would fit into a backpack and could replace human interaction with the bag enabling more controlled and repeatable tides for infants, children and adults.
  • GA-EMS, GA-Energy group, and GA-ASI adapted their prototyping and production capacities to produce 3D-printed face shields to meet local demand for PPE. Since late March, the joint team has manufactured and shipped over 5,000 face shields in the greater San Diego area and across the nation.
  • GA-EMS is accelerating the development schedule of its MATCHBOX™ Point-of-Care molecular diagnostic platform responding to the growing need for COVID-19 testing. MATCHBOX is expected to have the capability to test and diagnose for a wide range of known respiratory infections, including COVID-19, within 30-60 minutes using a single patient sample using a portable point-of-care instrument.

“The health, safety and well-being of our employees and our communities at large is a top priority for GA,” said Neal Blue, GA Chairman and CEO. “GA has been delivering solutions in support of public health for decades, and with so many in need during this unprecedented time, we have concentrated our collective efforts to address the current pandemic. I salute colleagues as they continue to innovate and look for creative solutions to the current crisis.”

About General Atomics Electromagnetic Systems

General Atomics pioneers in the development of transformational technologies. Since the dawn of the atomic age, GA’s innovations have advanced the state of the art across the full spectrum of science and technology – from nuclear energy and defense to medicine and high-performance computing. Behind a talented global team of scientists, engineers, and professionals, GA delivers safe, sustainable, and economical solutions to meet growing global demands. www.ga.com.

Post Malone Calls NASA Astronauts in Space for Earth Day
LinkedIn
post malone speaking remotely with astronauts

In a special Earth Day conversation, artist and music producer Post Malone spoke with NASA astronauts Steve Bowen and Woody Hoburg, who are currently living and working on the International Space Station.

Malone chatted with the astronauts about their favorite views from the orbiting laboratory, how their unique perspective changed how they see Earth, and what makes our home special.

The space station is an orbiting laboratory traveling at a speed of 17,500 mph (25,000 kph), completing one trip around Earth about every 90 minutes. Crew members carry out research and conduct thousands of experiments that have contributed to medical and social benefits on our home planet, allowing us to find new ways to combat disease and develop technologies to deliver clean water to remote communities in need.

Click to view on YouTube!

Related Articles:

Victor Glover Set To Become The First Black Man NASA Sends To The Moon

Taking on Diversity in Tech with Daleele Alison
LinkedIn
Daleele Allison headshot

Daleele Alison likes to help others stop wasting time doing tasks that don’t provide direct value to their clients. He is a technology professional, entrepreneur and the CEO and co-founder of RooksDM, a technology consulting group that helps alleviate pain points for small to midsize companies by using the right technology. Alison has worked as a consultant, business analyst and project manager for Fortune 500 companies to SMBs.

Diversity in STEAM Magazine (DISM) spoke with Alison about his company, the role diversity plays in tech and more on his participation in NMSDC’s Emerging Young Entrepreneurs cohort.

DISM: What have you seen businesses struggle with the most when it comes to their technology? How does RooksDM help them? 

Daleele Alison: From our perspective, businesses are excited about adopting new technology. However, when businesses rapidly implement new technology to fix a singular problem, this often becomes a band-aid solution and can lead to a different set of challenges. Many businesses end up with a large number of tech tools that become overwhelming to manage and lead to low user adoption. It’s important for businesses to take a step back and be strategic. At RooksDM, we ask the right questions about technology and processes and dig deep into the core pain points. Rather than simply throwing technology at a problem, we take a holistic approach. Our goal is to implement technology that works together and sets a foundation for scalable growth.

DISM: Do you feel there is diversity within the IT/tech sectors? Why or why not? 

Alison: We have seen progress in diversity within the tech industry. Organizations with targeted initiatives to increase diversity have definitely started to move the needle. It’s exciting to see a shift in the industry, however, there is still a long way to go. It continues to be a challenge for diverse vendors to break into large enterprise corporations. I’m hopeful that through tracking and monitoring vendor diversity, we will see even greater progress in supporting minorities in tech.

DISM: Why was it important for you to participate in NMSDC’s (National Minority Supplier Development Council) Emerging Young Entrepreneurs cohort? What have you learned thus far that is applicable to your own business? 

Alison: The NMSDC’s Emerging Young Entrepreneurs has been an important way for us to learn and network. Through this initiative, we have been able to connect with like-minded colleagues, which has led to advice and potential business growth. The sessions have been invaluable and have expanded my thoughts around marketing, finance and strategy. We are truly grateful to be a part of this community and are looking forward to more opportunities in the future.

DISM: How has being MBE certified through NMSDC leveraged your business’s success? 

Alison: Being MBE certified through NMSDC has given RooksDM access to a much larger community of like-minded businesses. We now have exposure to larger organizations to build our business. We have also built relationships with fellow minority-owned businesses. It has been so valuable to learn from each other and share stories and resources that support business growth. We are also proud to share our certification with current and prospective clients. This certification provides us with additional credibility that supports our conversations with potential clients.

DISM: What advice would you give another minority-owned entrepreneur or business owner just getting started?

Alison: My advice to fellow minority owners is to be intentional about how you spend your time. It’s easy to focus on initiatives that don’t matter or that won’t make an impact. It is critical to have the right people in your network to lean on so you can spend your time where it matters most. For us, spending time building relationships has been a game changer, not just in nurturing prospects but also in strengthening relationships within our industry. Leaning on others in the industry for support and expertise has not only led to referrals but been helpful to our overall growth.

Photo credit: Tori Soper Photography

4 Reasons to Consider a Career in Energy
LinkedIn
workers on rooftop solar panel

Implementing clean energy is far from just a phase, it’s a necessity. Given the growing concern with the climate crisis; scientists and innovators from across the country are working together to power our daily lives through environmentally friendly means. By joining a career in clean energy, you could not only aid in these efforts, but do so while securing a stable, growing career.

Here are five reasons why you should consider the clean energy workforce:

It’s a Growing Field in Every Way

We all know that clean energy is popular on a societal standpoint, but even economically the field is thriving. In late 2021, President Biden passed the Bipartisan Infrastructure Law, which among other things invested $65 billion in support for clean energy infrastructure, research, jobs and much more. More recently, the CHIPS and Science Act, as well as the new Inflation Reduction Act, have added billions in investments for clean energy jobs and technologies. This makes the salaries of those in Renewable energy higher than average.

Along with being incredibly well funded and well equipped for hiring, the industry also has a lot of opportunities for advancement. Since the industry is relatively new, many clean energy sectors look to promote within their current employees.

The Job Types are Endless

When we think of jobs in renewable energy, we tend to think of scientists, engineers and even construction workers. While all of these areas of expertise are looking for jobs, you don’t have to wear a lab coat or a hardhat to join the field. In fact, you can come from just about any background and find a career in energy that will work for you. For example, the Department of Energy hires for positions in an extensive list of positions including:

  • Business Administration
  • Communications
  • Construction
  • Engineering
  • Finance
  • Human Resources
  • IT/Cybersecurity
  • Legal Affairs
  • Marketing
  • Manufacturing
  • Operations Research
  • Physical Science
  • Public Policy
  • Safety
  • Sales

It is never too late or too difficult to join the clean energy workforce, and there are so many different ways in which you can apply your skills.

The Work Environment

As an often well-funded and new career industry, the clean energy sector tends to do a better job at keeping up with current business trends and creating a thriving work culture. This allows for many of the employees in the field to be positive and passionate about their work. Benefits of the work environment of the clean energy sector can include:

  • Fantastic diversity and inclusion initiatives in every sector
  • Health care benefits
  • Retirement plans
  • Working with passionate, like-minded coworkers
  • Opportunities to work in-office or from home
  • Opportunities for creativity, innovation and collaboration

You’re Making a Difference

There are many reasons to work toward a clean energy future. Whether it’s to protect the environment, promote energy justice, secure national energy independence, make scientific advancements or lower energy costs, there are many moral reasons you may have for wanting to join the field. In some industries, it can be difficult to see how any of the work you’re doing is making a difference in the world, but the clean energy industry does the exact opposite. In clean energy, no matter what your part is, your field is working to literally change the world every day by fighting climate change and promoting a healthier world for generations to come.

Sources: Department of Energy, Whitehouse.gov, Michael Page

First Native American Woman in Space Leads Mission to the Stars
LinkedIn
Astronaut Nicole Mann gives a thumbs up with American flag in the background

In late September, Space-X Crew, the fifth crewed operational NASA Commercial Crew flight of a Crew Dragon spacecraft, and the eighth overall crewed orbital flight launched into the cosmos and traveled to the space station. But unlike any other space mission in history, this one was led by mission commander Nicole Aunapu Mann, a colonel for the U.S. Marines, the first woman commander of a NASA Commercial Crew Program launch, and the first Native American woman in space.

Before ever setting foot in NASA territory, Mann attended the U.S. Naval Academy for her undergraduate degree and Stanford University for her graduate degree, both of which were in mechanical engineering. Mann was commissioned as a second lieutenant in the United States Marine Corps in 1999, completed flight training at The Basic School in Quantico in 2001, and began her operational flying career with her wings of gold as Naval Aviator by 2004. During this assignment, she deployed twice with CVW-1 aboard the USS Enterprise and flew combat missions in support of Operations IRAQI FREEDOM and ENDURING FREEDOM.

Upon return from her second deployment, Mann reported to the United States Naval Test Pilot School, Class 135, at NAS Patuxent River, Maryland where she began her Developmental Test tour at Air Test and Evaluation Squadron TWO THREE (VX-23) as an F/A-18 Test Pilot/Project Officer. While at VX-23, Mann executed a variety of flight tests, including loads envelope expansion, flying qualities, carrier suitability and ordnance separation in the F/A-18A-F.

In the spring of 2011, Mann assumed duties as the VX-23 Operations Officer and was assigned to the PMA-281 as the Joint Mission Planning System — Expeditionary (JMPS-E) Integrated Product Team Lead just a year later. Before being selected as a NASA astronaut soon after, Mann’s military service accumulated more than 2,500 flight hours in 25 types of aircraft, 200 carrier arrestments and 47 combat missions in Iraq and Afghanistan.

Her service earned her two Air Medals, two Navy and Marine Corps Commendation Medals, two Navy and Marine Corps Achievement Medals, along with several other honors for her various academic, flight and military successes.

In 2013, Mann was selected as one of the eight members of NASA Astronaut Group 21 and completed her training two years later. She has since served as a T-38 Talon Safety and Training Officer and was the Assistant to the Chief of Exploration. She led the astronaut corps in the development of the Orion spacecraft, Space Launch System and Exploration Ground Systems. Her mission command to the International Space Station with Crew-5 was Mann’s first time traveling to space.

With Mann at mission command, Crew-5 additionally consisted of Navy Commander turned astronaut Josh Cassada, Japan Aerospace Exploration Agency astronaut Koichi Wakata and Roscosmos cosmonaut Anna Kikina. While on the space station, the team studied new biological technology advancements, such as the possibility of 3D printing human cells.

Mann is also confirmed to be a member of the Artemis program, the mission taking a group of astronauts back to the Moon for the first time since 1972. The Artemis program will launch in 2024 and cite one of the crew members as the first woman on the moon.

“It’s very exciting,” Mann told Indian Country Today upon first learning she would be the first Native American woman to officially be going to space, “I think it’s important we communicate this to our community, so that other Native kids, if they thought maybe that this was not a possibility or to realize that some of those barriers that used to be there are really starting to get broken down.”

Sources: NASA, Wikipedia, BBC, CBS, Indian Country Today

Cracking the code: Working together to engage and empower female technologists at Bloomberg
LinkedIn
diverse women working on laptop

To create products that serve increasingly diverse customers and solve a wider range of social problems, technology companies need women engineers. However, only 25 percent of math and computer science jobs in the United States are filled by women, and one-third of women in the U.S. and China quit these jobs mid-career due to factors like social isolation, a lack of access to creative technical roles and difficulty advancing to leadership positions.

At Bloomberg, we’ve established a company culture that supports gender equality in a multitude of ways – from company-wide Diversity & Inclusion business plans to a newly expanded family leave policy. But we know that’s not enough. In recent years, we’ve adopted a system-wide approach to increasing the number of women in technical roles, taking steps to remove barriers to advancement both inside our organization and beyond Bloomberg, supporting female talent from middle school through mid-career.

While the number of women in technical jobs at Bloomberg is growing, we’re committed to making progress faster and completing all the steps needed to solve the equation. Here are some of the ways we’re tackling this important deficit – and making quantifiable change.

Early engagement

Bloomberg supports organizations that help increase women’s participation in STEM and financial technology, exposing students to various career options through Bloomberg Startup and encouraging our female engineers to engage with the next generation of talent.

Collaboration, creativity, and a love of problem-solving drew Chelsea Ohh to the field of engineering. Now she works at Bloomberg as a software engineer team lead, helping to provide critical information to financial decision makers across the globe.

Recruitment

We target our entry-level engineering recruiting efforts at colleges that have achieved or are focused on gender parity in their STEM classes. And because not all the best talent come from the same schools or have the same experiences, Bloomberg actively seeks women engineers with non-traditional backgrounds or career paths.

Talent development

Women engineers can sharpen their technical skills through open courses, on-site training sessions, and business hackathons held throughout the year. Bloomberg is committed to inspiring our female employees, eliminating barriers like impostor syndrome, and encouraging them to pursue opportunities in engineering.

Community & allies

To strengthen its network of female engineers, global BWIT (Bloomberg Women in Technology) chapters organize more than 150 events, mentoring sessions, and meet-ups a year. The community also engages male allies and advocates, sharing strategies to help them support their female colleagues.

Click here to read the full article on Bloomberg.

How 4 engineers and culture champions are growing their careers at Bloomberg
LinkedIn
Businesswoman at desk checking phone with tech graphs in background

Bloomberg Engineering’s culture champions innovation. This is made possible by the different perspectives of our 6,000+ software engineers around the globe, who come from diverse backgrounds and geographies and who possess a variety of technology specialties.

Meet four of Bloomberg’s software engineers – all of whom are active members of the Bloomberg Black in Tech Community across our New York, San Francisco and London engineering teams – and see how they’ve been empowered to impact our business globally.

 

Our conversations with them cover their paths to and work at Bloomberg, how they’ve grown professionally, their impact in technology, the importance of an inclusive workplace, and their efforts to attract more diversity to tech. Interviews were edited for length and clarity.

Lerena Holloway is a Software Engineer at Bloomberg's New York office.
Lerena Holloway is a Software Engineer at Bloomberg’s New York office.

Lerena Holloway

TITLE: Software Engineer
BLOOMBERG OFFICE: New York

How did you get to Bloomberg? What do you work on now?
I lived abroad for 5 years, during which time I taught English in South Korea for 3½ years. I then served in the U.S. Navy for 4 years, after which I felt the urge to embrace my technical talents. This career change turned out to be one of the best decisions I have ever made.

While finishing my MBA, I decided to apply to the Grace Hopper Program at Fullstack Academy, one of the country’s top-ranked coding bootcamps. This decision was the beginning of my path to Bloomberg, which I was drawn to for its philanthropic programs, the eclectic and dynamic nature of the Bloomberg Terminal, and the opportunity to be immersed in a culture of strong, talented software engineers.

I’m currently in the training program for new engineers. Prior to starting my training, I had the privilege of pre-training on the Commodities team, where I worked on building a map UI in React and Node.js and integrating it with a remote procedure call framework. I really enjoyed the learning process in discovering how to merge open source technologies with proprietary technologies.

Did you have any mentors or influential managers to guide your career along the way?
One of my mentors is Erik Anderson, the software engineer who helped created MAPS<GO> and many of Bloomberg’s chart functions. Erik has helped me a great deal in building my confidence to tackle things outside my comfort zone. He really has helped me see that I was capable of more than I thought and encouraged me along the way, which really made me more driven to put in the long hours of practice and study that it takes to get to Bloomberg.

What do you love most about working in tech?
I really enjoy the way it has evolved over the years and how it continues to change so rapidly. Working in technology forces me to continue learning and embrace my status as a ‘forever’ student. The moment we get too comfortable in this industry is the moment we are in danger of falling behind. There are so many advances and new technologies that, even after just one year, the older versions are quickly out-of-date. What I love most is that it is an industry that never gets too comfortable; it is about constantly improving the product and making applications faster and more efficient. The associated mental challenges and continuous learning excite me the most!

What are some of the unique challenges that people of color face getting into tech / within the tech industry?
Entering a male-dominated industry doesn’t come without trepidation. Knowing that people come equipped with certain biases that they themselves may not even be aware of plays a role; it is just the way we have all been socially-programmed by the media, our parents, and our communities. The tech industry is challenging by itself and people of color may have to face a few additional challenges, dealing with variations of micro-inequities, and the burden of not contributing to certain stereotypes. However, what I enjoy the most are the raised awareness and open discussions seeking to address these imbalances. It really shows how we, as a human species, are evolving our consciousness around these issues.

In your opinion, why are diversity and inclusion important? How do you personally promote diversity and inclusion with your teams and/or in the community?
Diversity and inclusion are crucial to the strength of any great organization. In order for technology to serve a wider range of users, understanding their needs and wants is very important. With the advent of globalization, this type of understanding can only be reached by increasing diversity and inclusion in the workplace.

I also enjoy sharing my experiences traveling and living abroad with my co-workers. It highlights the importance of travel as a way to break down barriers in understanding different cultures, which I believe is a pivotal step towards this objective. I am also a member of many different communities here at Bloomberg, so as not to limit the definition of myself to one particular ethnicity or background, but to expand my sense of self in order to represent the many different cultural experiences I’ve had and those I’ve adopted along the way.

Deji Akinyemi is a Senior Software Engineer at Bloomberg's New York office.
Deji Akinyemi is a Senior Software Engineer at Bloomberg’s New York office.

Deji Akinyemi

TITLE: Senior Software Engineer
BLOOMBERG OFFICE: New York

How did you get to Bloomberg?
I was an industry hire out of a Bloomberg recruiting event in Seattle, where I met the engineers who would eventually be my managers. They were great and provided an amazing vision of the technical challenges and company culture at Bloomberg.

What do you work on now?
I am presently working on designing and building out the underlying platform that supports Bloomberg’s Asset Investment Management (AIM) compliance workflows.

Did you have any mentors to guide your career along the way?
Most definitely! I was fortunate to have an awesome mentor when I first started at Bloomberg. He was one of those engineers whose code nuances and expressiveness are like revelations. I learned a lot about my team and Bloomberg’s culture just by contributing to his code. I was also fortunate to have supportive managers who accommodated my desire to be challenged. They were able to provide interesting, tangible and business-critical projects to broaden my scope and contributions.

What do you love most about working in tech?
It has been said that engineers are the gatekeepers for civilization. Being in tech is like a calling. The work one does has a direct impact on the well-being of others. It gets more interesting when your work pushes the boundaries of what is considered possible. When this happens, there is no greater feeling than creating something new. Then you realize that, in some small way, you’ve (hopefully) helped make the world just a bit better than before.

Are there any particular technologies that interest you?
Machine learning, especially around the areas of natural language processing and understanding. The best technologies are those that feel so completely natural and intuitive that you may forget that you are interacting with a machine. Ironically, it is extremely difficult to create such a system. Applications of ML have the powerful potential to change the way we all interact with technology, if not the very nature of the machines we use.

What are some of the unique challenges that people of color face getting into tech / within the tech industry?
There are very few of us in the tech industry. This truism begs us to ask why, as demographics don’t support this reality, as 10% of all college graduates and computer science majors are people of color. It’s sometimes hard not to feel excluded when there are very few people who look like you in the places that you are or want to be. There is often a significant effort required to go from ‘person of color,’ to ‘person,’ to ‘extremely capable person’ in the minds of others that people of other backgrounds do not face.

In your opinion, why are diversity and inclusion important?
Antifragility is a term coined by bestselling author Nassim Nicholas Taleb that describes systems that thrive in the face of volatility, shock or adversity. It represents the next step beyond robustness and resilience. I believe that, by their very nature, antifragile systems are diverse. Events that could take down a monoculture are often integrated and used for the greater good by an antifragile system. Diversity and inclusion promote antifragility by fostering teams that are tolerant, supportive, engaging and dynamic.

How do you personally promote diversity and inclusion with your teams and/or in the community?
I am one of the co-founders of the Bloomberg Black In Tech (BBIT) Community, which is composed of individuals in technology roles across Bloomberg – in engineering, product management, data science, etc. BBIT’s singular goal is to make Bloomberg the best place for minorities in tech across the industry. We host regular events to foster professional and personal development and create a fun, safe space. We work very hard to engage, support and empower the community at large through mentoring, recruiting, and outreach events on college campuses and at tech conferences with significant minority representation.

Akin Mousse is a BQuant Specialist for the Desktop Build Group in Bloomberg's San Francisco office.
Akin Mousse is a BQuant Specialist for the Desktop Build Group in Bloomberg’s San Francisco office.

Akin Mousse

TITLE: BQuant Specialist, Desktop Build Group
BLOOMBERG OFFICE: San Francisco

How did you get to Bloomberg? What do you work on now?
I spent the first five years of my career at leading French banks where, among other things, I designed and implemented technology to automate processes on trading floors. Bloomberg found me on LinkedIn and recruited me to our London office in 2013. I’ve now worked in our San Francisco office for five years.

I’m currently a BQuant Specialist in our Desktop Build Group. In this role, I educate our clients’ quantitative financial researchers, analysts, and data scientists to leverage BQuant, our interactive data analysis and quantitative research platform and new Bloomberg Query Language (BQL). To do this, I first have to understand our clients’ workflows and determine how and where our quant research solutions can help them derive value. Often, we can help clients reduce the amount of time and manual labor spent reviewing financial statements. We can incorporate probability and statistics that help clients make faster and more accurate decisions on their financial strategies. Many times, I create the specifications, design a custom application for a team of about 20-50 users, test the app, and implement it at the client site. Finally, I help train users to program in Python in order to leverage BQuant.

Did you have any mentors or influential managers to guide your career along the way?
It has been challenging finding a Black professional mentor. David Mitchell, a team leader for our market specialists, has been a huge inspiration for me. We both started our careers in finance and moved to tech, so I feel like we have much in common. I appreciate how he reaches out periodically to check in on me. I admire his leadership of Bloomberg’s Black Professional Community and am really impressed by his career trajectory and the network he has built. It’s really important to see a person of color in a senior position because it makes that rank seem attainable for the rest of us.

Sandra Lee, who works in Bloomberg’s Product Oversight Office, has also been an influential mentor since we first met in 2016. She’s been with Bloomberg for more than 20 years, and she has helped me understand Bloomberg’s culture and navigate internal networks. I often use her as a sounding board to help me articulate my vision and get a second opinion. On a personal level, she shows me the value of work-life balance.

What do you love most about working in tech?
I love being in a position where I’m learning something. Technology is perpetually evolving, and you always need to be on your toes to remain competitive. I will often think about a complex engineering challenge that I am trying to solve, and will have a candid conversation with a colleague or I will read an article, and then a solution will emerge. I then implement it and it is so satisfying when it works. I also like that tech has tangible results.

Are there any particular technologies that interest you?
I am really excited about artificial intelligence (AI) and machine learning (ML). I love the idea that technology can show us patterns that humans cannot otherwise see because we cannot scrape through large volumes of data as quickly. From there, we can extract specific insights that influence our decision-making.

My interest in AI and ML led me to complete a graduate-level certificate program at the University of San Francisco. While I’m not using these skills in my current role, I’m excited that Bloomberg is doing cutting-edge work in natural language processing and other areas related to ML and AI. I’ve also joined Bloomberg’s Machine Learning Guild so I can stay connected to this technology; otherwise, it is hard to stay on top of it when you don’t apply it on a daily basis.

What are some of the unique challenges that people of color face getting into tech / within the tech industry?
One word: R-E-P-R-E-S-E-N-T-A-T-I-O-N! We need to see peers and leaders who are people of color. When I don’t see people of color in leadership positions, I feel like it’s less possible to attain success. When I see Black leaders, I get a lot of motivation and affirmation that it could be me one day.

In my experience, people of color aren’t taken as seriously by their peers unless there are other people of color in leadership positions. I personally feel like I need to be better than anyone else in whatever I’m doing. I don’t want to give any opening for the quality of my work to be questioned. For that reason, I often spend extra time double-checking my work in order to make everything is perfect. No one asks me to do this, but I feel I must. This adds a dimension of extra stress because that workflow is not scalable or sustainable and can lead to burnout.

In your opinion, why are diversity and inclusion important? How do you personally promote diversity and inclusion with your teams and/or in the community?
Life is so much more fulfilling when you can interact with people from different backgrounds and ways of life. At work, a diverse team can help prevent tunnel vision when solving challenges or meeting client needs. Everyone comes with baggage and biases that sometimes makes communication uncomfortable, but this ultimately leads to rich learning experiences.

I’m always trying to recruit and advocate for more underrepresented minority candidates, because we are only likely to stay at Bloomberg if we continue seeing more diversity on our teams.

Jonathan “JC” Charlery is a Senior Software Engineer at Bloomberg's London office.
Jonathan “JC” Charlery is a Senior Software Engineer at Bloomberg’s London office.

Jonathan “JC” Charlery

TITLE: Senior Software Engineer
BLOOMBERG OFFICE: London

How did you get to Bloomberg?
I was on my way to interview with a different company during the career fair at Howard University, when I ran into Kerry Joseph, an engineer who was recruiting for Bloomberg. We got to chatting about the company and he invited me to an info session later that night. What struck me was how down-to-earth and genuine he was. He wasn’t trying to sell me anything; he just talked about his own experiences at the company and how the job allowed him to grow.

In talking about his own background, we discovered we were from neighbouring islands in the Caribbean so we shared a cultural background. Having that conversation, and seeing and hearing someone like me at Bloomberg who had such a positive experience is what really sold me on the company.

What do you work on now?
I’m on the Local Development team in London, which is part of our Developer Experience (DevX) group. Our team creates and supports the tools and workflows that allow engineers to develop and test their applications locally on their laptops using whatever tools they prefer, instead of relying on a limited shared environment.

Did you have any mentors or influential managers to guide your career along the way?
Zac Rider, who leads our Real-time Distribution Platform engineering team, and Becky Plummer, a software engineering team leader in DevX (and my current manager) are two of the most influential managers I’ve had during my tenure at Bloomberg. They’ve provided me with many opportunities for growth and helped me build up my confidence in my own abilities. They were instrumental in putting my career on its current trajectory.

Femi Popoola, a technical team lead in London, has also been an amazing mentor to me. We’ve spoken about many different topics related to personal and technical growth, like knowing which opportunities are right for you and how to manage them, to understanding when you’re ready to take on a new challenge (hint: you’re never going to be “ready,” but don’t let that stop you).

What do you love most about working in tech?
I love the rate at which everything changes in the tech industry, and the ease of being able to get involved.

The tech industry evolves so quickly that you’ll miss it if you blink. In the last 20 years or so, we’ve gone from having one dedicated phone line per family and maybe having a computer for the household to us all having a computer in our pockets and everyone having a phone. All the information this puts at our fingertips has made it much easier for anyone to become involved and even to transfer into tech-related fields from any profession.

Are there any particular technologies that interest you?
Docker and container technologies are particularly interesting to me. The ability to simulate an entire environment and have repeatable declarative processes have really changed the way we think about development, testing, and stability of our systems.

What are some of the unique challenges that people of color face getting into tech / within the tech industry?
Without seeing other people who look like them or can stand as a role model for them, people of colour tend to get discouraged from entering the tech industry. It is hard to continue being self-motivated or to believe you can achieve something if all the stereotypical icons don’t represent you in any way. It’s why Kerry stood out to me so much. He was West Indian and able to succeed in the tech industry. This isn’t spoken about often, but it creates a real psychological barrier for many people. Being able to connect with someone who shares your heritage or cultural background, and being able to see yourself in that person, are some of the greatest motivating factors.

In your opinion, why are diversity and inclusion important?
Diversity and inclusion are very important as they provide different perspectives. Having someone who can see something in a different manner and who brings their own background and experiences can help elicit a new style of thinking and new direction when it is needed the most. When all options have seemingly been exhausted, something which may seem intrinsically basic to someone can actually be just what is needed to get things moving again.

How do you personally promote diversity and inclusion with your teams and/or in the community?
I’ve spoken at events aimed at promoting and highlighting diversity and inclusion, as well as been a representative, speaker and mentor at both internal and external events aimed at empowering underprivileged youth to encourage them to pursue careers in STEM and grow their networks. This includes serving as a mentor to both university students and secondary school students.

I have been an advocate for and given advice about different ways to recruit effectively at select Historically Black Colleges & Universities (HBCUs) across the U.S. I’ve also attended university career fairs where I directly engage with students, serving not only as a company point of contact for them, but also sharing my experiences with them. I talk to new hires about my career progression and serve as a mentor to help them navigate the company’s culture.

Click here to read the full article on Bloomberg.

What STEM Careers are in High Demand?
LinkedIn
What STEM Careers are in High Demand

Have you ever wondered what the outlook might be for your STEM career five or even ten years out? Or maybe you are a current student weighing your options for a chosen career path and need to know the type of degree that is required.

Oak Ridge Institute for Science and Education labor trends and workforce studies experts have culled through the BLS data and have summarized the outlook for several select STEM careers.

With the right information in-hand — and a prestigious research experience to complement your education — you can increase the confidence you have when selecting a STEM career.

Software Developers
There are over 1,469,000 software developers in the U.S. workforce either employed as systems software developers or employed as applications software developers. Together, employment for software developers is projected to grow 22 percent from 2019 to 2029, much faster than the average for all occupations.

Software developers will be needed to respond to an increased demand for computer software because of an increase in the number of products that use software. The need for new applications on smart phones and tablets will also increase the demand for software developers. Software developers are the creative minds behind computer programs. Some develop the applications that allow people to do specific tasks on a computer or another device. Others develop the underlying systems that run the devices or that control networks. Most jobs in this field require a degree in computer science, software engineering, or a related field and strong computer programming skills.

Software developers are in charge of the entire development process for a software program from identifying the core functionality that users need from software programs to determining requirements that are unrelated to the functions of the software, such as the level of security and performance. Software developers design each piece of an application or system and plan how the pieces will work together. This often requires collaboration with other computer specialists to create optimum software.

Atmospheric Scientists
Atmospheric sciences include fields such as climatology, climate science, cloud physics, aeronomy, dynamic meteorology, atmosphere chemistry, atmosphere physics, broadcast meteorology and weather forecasting.

Most jobs in the atmospheric sciences require at least a bachelor’s degree in atmospheric science or a related field that studies the interaction of the atmosphere with other scientific realms such as physics, chemistry or geology. Additionally, courses in remote sensing by radar and satellite are useful when pursuing this career path.

According to the Bureau of Labor Statistics (BLS), computer models have greatly improved the accuracy of forecasts and resulted in highly customized forecasts for specific purposes. The need for atmospheric scientists working in private industry is predicted to increase as businesses demand more specialized weather information for time-sensitive delivery logistics and ascertaining the impact of severe weather patterns on industrial operations. The demand for atmospheric scientists working for the federal government will be subject to future federal budget constraints. The BLS projects employment of atmospheric scientists to grow by 8 percent over the 2018 to 2028 period. The largest employers of atmospheric scientists and meteorologists are the federal government, research and development organizations in the physical, engineering, and life sciences, state colleges and universities and television broadcasting services.

Electrical and Electronics Engineers
According to the Bureau of Labor Statistics (BLS), there are approximately 324,600 electrical and electronics engineers in the U.S. workforce. Workers in this large engineering occupation can be grouped into two large components — electrical engineers and electronics engineers. About 188,300 electrical engineers design, develop, test or supervise the manufacturing of electrical equipment, such as power generation equipment, electrical motors, radar and navigation systems, communications, systems and the electrical systems of aircraft and automobiles. They also design new ways to use electricity to develop or improve products. Approximately 136,300 electronics engineers design and develop electronic equipment such as broadcast and communications equipment, portable music players, and Global Positioning System devices, as well as working in areas closely related to computer hardware. Engineers whose work is devoted exclusively to computer hardware are considered computer hardware engineers. Electrical and electronics engineers must have a bachelor’s degree, and internships and co-op experiences are a plus.

The number of jobs for electrical engineers is projected by BLS to grow slightly faster (9 percent) than the average for all engineering occupations in general (8 percent) and faster than for electronics engineers (4 percent) as well. However, since electrical and electronics engineering is a larger STEM occupation, growth in employment is projected to result in over 21,000 new jobs over the 2016-2026 period. The largest employers of electrical engineers are engineering services firms; telecommunications firms; the federal government; electric power generation, transmission and distribution organizations such as public and private utilities; semiconductor and other electronic component manufacturers; organizations specializing in research and development (R&D) in the physical, engineering and life sciences; and navigational, measuring, electro-medical and control systems manufacturers.

BLS notes three major factors influencing the demand for electrical and electronic engineers. One, the need for technological innovation will increase the number of jobs in R&D, where their engineering expertise will be needed to design power distribution systems related to new technologies. They will also play important roles in developing solar arrays, semiconductors and communications technologies, such as 5G. Two, the need to upgrade the nation’s power grids and transmission components will drive the demand for electrical engineers. Finally, a third driver of demand for electrical and electronic engineers is the design and development of ways to automate production processes, such as Supervisory Control and Data Acquisition (SCADA) systems and Distributed Control Systems (DCS).

Data Science and Data Analysts
Technological advances have made it faster and easier for organizations to acquire data. Coupled with improvements in analytical software, companies are requiring data in more ways and higher quantities than ever before, and this creates many important questions for them, including “Who do we hire to work with this data”? The answer is likely a Data Scientist.

When trying to answer the question “what is data science,” Investopedia defines it as providing “meaningful information based on large amounts of complex data or big data. Data science, or data-driven science, combines different fields of work in statistics and computation to interpret data for decision-making purposes.” This includes data engineers, operations research analysts, statisticians, data analysts and mathematicians.

The BLS projects the employment of statisticians and mathematicians to grow 30 percent from 2018-2028, which is much faster than the average for all occupations. According to the source, organizations will increasingly need statisticians to organize and analyze data in order to help improve business processes, design and develop new products and advertise products to potential customers. In addition, the large increase in available data from global internet use has created new areas for analysis such as examining internet search information and tracking the use of social media and smartphones. In the medical and pharmaceutical industries, biostatisticians will be needed to conduct the research and clinical trials necessary for companies to obtain approval for their products from the Food and Drug Administration.

Along with that of statistician, the employment of operations research analysts is projected by the BLS to grow by 26 percent from 2018-2028, again much faster than the average for all occupations. As organizations across all economic sectors look for efficiency and cost savings, they seek out operations research analysts to help them analyze and evaluate their current business practices, supply chains and marketing strategies in order to improve their ability to make wise decisions moving forward. Operations research analysts are also frequently employed by the U.S. Armed Forces and other governmental groups for similar purposes.

To learn more about other flourishing careers in STEM, visit bls.gov/ooh to learn more.

Source: Oak Ridge Institute for Science and Education

Scientists Partially Restored a Blind Man’s Sight With New Gene Therapy
LinkedIn
In previous studies, researchers have been able to treat a genetic form of blind ness called Leber congenital amaurosis, by fixing a faulty gene that would otherwise cause photoreceptors to gradually degenerate.

By Carl Zimmer, Yahoo! News

A team of scientists announced Monday that they had partially restored the sight of a blind man by building light-catching proteins in one of his eyes. Their report, which appeared in the journal Nature Medicine, is the first published study to describe the successful use of this treatment. “Seeing for the first time that it did work — even if only in one patient and in one eye — is exciting,” said Ehud Isacoff, a neuroscientist at the University of California, Berkeley, who was not involved in the study.

The procedure is a far cry from full vision. The volunteer, a 58-year-old man who lives in France, had to wear special goggles that gave him the ghostly perception of objects in a narrow field of view. But the authors of the report say that the trial — the result of 13 years of work — is a proof of concept for more effective treatments to come.

“It’s obviously not the end of the road, but it’s a major milestone,” said José-Alain Sahel, an ophthalmologist who splits his time between the University of Pittsburgh and the Sorbonne in Paris.

Sahel and other scientists have tried for decades to find a cure for inherited forms of blindness. These genetic disorders rob the eyes of essential proteins required for vision.

When light enters the eye, it is captured by photoreceptor cells. The photoreceptors then send an electrical signal to their neighbors, called ganglion cells, which can identify important features like motion. They then send signals of their own to the optic nerve, which delivers the information to the brain.

In previous studies, researchers have been able to treat a genetic form of blindness called Leber congenital amaurosis, by fixing a faulty gene that would otherwise cause photoreceptors to gradually degenerate.

But other forms of blindness cannot be treated so simply, because their victims lose their photoreceptors completely.

“Once the cells are dead, you cannot repair the gene defect,” Sahel said.

For these diseases, Sahel and other researchers have been experimenting with a more radical kind of repair. They are using gene therapy to turn ganglion cells into new photoreceptor cells, even though they don’t normally capture light.

The scientists are taking advantage of proteins derived from algae and other microbes that can make any nerve cell sensitive to light.

In the early 2000s, neuroscientists figured out how to install some of these proteins into the brain cells of mice and other lab animals by injecting viruses carrying their genes. The viruses infected certain types of brain cells, which then used the new gene to build light-sensitive channels.

Originally, researchers developed this technique, called optogenetics, as a way to probe the workings of the brain. By inserting a tiny light into the animal’s brain, they could switch a certain type of brain cell on or off with the flick of a switch. The method has enabled them to discover the circuitry underlying many kinds of behavior.

Click here to read the full article on Yahoo! News.

This is how the human heart adapts to space
LinkedIn
Two men are standing looking at each other in front of what appears to be a map.

By Ashley Strickland

When astronaut Scott Kelly spent nearly a year in space, his heart shrank despite the fact that he worked out six days a week over his 340-day stay, according to a new study.

Surprisingly, researchers observed the same change in Benoît Lecomte after he completed his 159-day swim across the Pacific Ocean in 2018.
The findings suggest that long-term weightlessness alters the structure of the heart, causing shrinkage and atrophy, and low-intensity exercise is not enough to keep that from happening. The study published Monday in the American Heart Association’s journal Circulation.
Photo : CNN
The gravity we experience on Earth is what helps the heart to maintain both its size and function as it keeps blood pumping through our veins. Even something as simple as standing up and walking around helps pull blood down into our legs.
When the element of gravity is replaced with weightlessness, the heart shrinks in response.
Kelly lived in the absence of gravity aboard the International Space Station from March 27, 2015, to March 1, 2016. He worked out on a stationary bike and treadmill and incorporated resistance activities into his routine six days a week for two hours each day.
Lecomte swam from June 5 to November 11, 2018, covering 1,753 miles and averaging about six hours a day swimming. That sustained activity may sound extreme, but each day of swimming was considered to be low-intensity activity.
Even though Lecomte was on Earth, he was spending hours a day in the water, which offsets the effects of gravity. Long-distance swimmers use the prone technique, a horizontal facedown position, for these endurance swims.
Researchers expected that the activities performed by both men would keep their hearts from experiencing any shrinkage or weakening. Data collected from tests of their hearts before, during and after these extreme events showed otherwise.
Kelly and Lecomte both experienced a loss of mass and initial drop in diameter in the left ventricles of the heart during their experiences.
Both long-duration spaceflight and prolonged water immersion led to a very specific adaptation of the heart, said senior study author Dr. Benjamin Levine, a professor of internal medicine/cardiology at the University of Texas Southwestern Medical Center.
While the authors point out that they only studied two men who both performed extraordinary things, further study is needed to understand how the human body reacts in extreme situations.
Read the full article at CNN.
Stressed out? Blame bad technology
LinkedIn

By Reuters

There is no question that we are all more dependent on technology than ever. So what happens when that tech does not work?

In the past, Emily Dreyfuss used an old-school strategy: She yelled.

When Amazon’s Alexa spat out wrong answers or misunderstood questions, Dreyfuss let the virtual assistant have it.

“I used her as a scapegoat for my feelings,” said Dreyfuss, a writer and editor for Harvard’s Shorenstein Center. “When you have a non-sentient and annoying device in your home, who isn’t doing what you want, I talked to her in not the nicest terms. And my husband ganged up on her, too.”

Tech frustrations like this have happened to all of us. Your wifi is always dropping out. Your passwords do not work. Your laptop crashes, and you lose everything you were working on. Just reading about those possibilities could be enough to raise your blood pressure.

Technology can damage our state of mind, and new research is bearing that out: Computer giant Dell Technologies, in partnership with neuroscience firm EMOTIV, put people through a gauntlet of bad tech experiences, and then measured their brainwaves to gauge their reactions.

Test subjects had trouble logging on, or had to navigate sluggish applications, or saw their spreadsheets crash.

“The moment people started using bad technology, we saw a doubling of their levels of stress,” said Olivier Oullier, EMOTIV’s president. “I was a bit surprised by that, because you rarely see those levels going so high. Tech stress had a lasting effect, Oullier added. “People don’t relax back into calmness quickly. It takes a long time.”

Company bottom lines have suffered along with the mental health of employees. Constant frustration with bad tech affects how staffers handle their daily workloads, especially younger workers. Gen Z and Millennial test subjects saw a whopping 30% productivity drop as a result.

“Bad experiences affect you regardless of computer literacy,” said Cile Montgomery, who leads customer experience initiatives for Dell. “But young people seem to be even more impacted, because they expect technology to work.”

Read the full article at Reuters.

Alight

Alight Solutions

Leidos

Robert Half