SpaceX capsule with 4 astronauts reaches space station

LinkedIn
The SpaceX Dragon Capsule crew appearing to the public before boarding

SpaceX’s newly launched capsule with four astronauts arrived Monday at the International Space Station, their new home until spring.

The Dragon capsule pulled up and docked late Monday night, following a 27-hour, completely automated flight from NASA’s Kennedy Space Center. The linkup occurred 262 miles above Idaho.

“Oh, what a good voice to hear,” space station astronaut Kate Rubins called out when the Dragon’s commander, Mike Hopkins, first made radio contact.

“We can’t wait to have you on board,” she added after the two spacecraft were latched together.

This is the second astronaut mission for SpaceX. But it’s the first time Elon Musk’s company delivered a crew for a full half-year station stay. The two-pilot test flight earlier this year lasted two months.

The three Americans and one Japanese astronaut will remain at the orbiting lab until their replacements arrive on another Dragon in April. And so it will go, with SpaceX — and eventually Boeing — transporting astronauts to and from the station for NASA.

This regular taxi service got underway with Sunday night’s launch.

Hopkins and his crew — Victor Glover, Shannon Walker and Japan’s Soichi Noguchi — join two Russians and one American who flew to the space station last month from Kazakhstan. Glover is the first African-American to move in for a long haul. A space newcomer, Glover was presented his gold astronaut pin Monday.

The four named their capsule Resilience to provide hope and inspiration during an especially difficult year for the whole world. They broadcast a tour of their capsule Monday, showing off the touchscreen controls, storage areas and their zero gravity indicator: a small plush Baby Yoda.

Continue to Fox News to read the entire article.

Photo Credit: NASA/Kim Shiflett

Astronomers discover largest known spinning structures in the universe
LinkedIn
An artist's impression of a spinning cosmic filament that astronomers found

By , Space.com

Tendrils of galaxies up to hundreds of millions of light-years long may be the largest spinning objects in the universe, a new study finds. Celestial bodies often spin, from planets to stars to galaxies. However, giant clusters of galaxies often spin very slowly, if at all, and so many researchers thought that is where spinning might end on cosmic scales, study co-author Noam Libeskind, a cosmologist at the Leibniz Institute for Astrophysics Potsdam in Germany, told Space.com.

But in the new research, Libeskind and his colleagues found that cosmic filaments, or gigantic tubes made of galaxies, apparently spin. “There are structures so vast that entire galaxies are just specks of dust,” Libeskind said. “These huge filaments are much, much bigger than clusters.”

Previous research suggested that after the universe was born in the Big Bang about 13.8 billion years ago, much of the gas that makes up most of the known matter of the cosmos collapsed to form colossal sheets. These sheets then broke apart to form the filaments of a vast cosmic web.

Using data from the Sloan Digital Sky Survey, the scientists examined more than 17,000 filaments, analyzing the velocity at which the galaxies making up these giant tubes moved within each tendril. The researchers found that the way in which these galaxies moved suggested they were rotating around the central axis of each filament.

The fastest the researchers saw galaxies whirl around the hollow centers of these tendrils was about 223,700 mph (360,000 kph). The scientists noted they do not suggest that every single filament in the universe spins, but that spinning filaments do seem to exist.

The big question is, “Why do they spin?” Libeskind said. The Big Bang would not have endowed the universe with any primordial spin. As such, whatever caused these filaments to spin must have originated later in history as the structures formed, he said.

Click here to read the full article on Space.com.

This is what it’s like to walk in space
LinkedIn
Astronaut Ed White during the first American spacewalk.

By Ashley Strickland, CNN

When astronauts venture outside of the International Space Station to go on spacewalks, the most important thing they have to do is focus. This may sound simple, but imagine trying to focus on a memorized set of tasks while stepping out of an airlock and wearing a 300-pound spacesuit — with the glow of planet Earth and the sun and the dark void of the universe all around you. A tether connects you to the space station, and the absence of gravity keeps you from falling.

“There’s a lot of things that you really need to do, one of which is just keep your focus, even though it’s amazing out there,” said NASA astronaut Mike Fincke. “It’s really truly breathtaking. The only thing between you and the rest of the universe, seeing the whole cosmos of creation, is the glass faceplate of your visor on your helmet, and it’s just awe-inspiring.”

Astronaut Mike Fincke conducted a spacewalk on August 3, 2004, while wearing the Russian Orlan spacesuit. You can see Earth behind him.

Depending on the orientation of the space station, which completes 16 orbits of the Earth each day while moving at 17,500 miles per hour, our planet can appear above or below the astronauts.

Fincke is a veteran of spaceflight. He’s spent 382 days in space, and he’s gone on nine spacewalks in Russian and American spacesuits. Fincke is training in Texas for his fourth spaceflight and will launch to the space station later this year on the first crewed experimental test flight of Boeing’s Starliner.
More than 550 people have been to space and about half of them have been on a spacewalk, Fincke said. Spacewalks are often referred to as EVAs, or extravehicular activities.

The first spacewalk by an American astronaut was conducted by NASA astronaut Ed White on June 3, 1965. He left the Gemini 4 capsule at 3:45 p.m. ET and remained outside of it for 23 minutes. (Soviet cosmonaut Aleksei A. Leonov completed the world’s first spacewalk on March 18 of that year.)

Gemini 4 circled the Earth 66 times in four days. During the spacewalk, White began over the Pacific Ocean near Hawaii and went back inside the capsule as they flew over the Gulf of Mexico.
He exited the spacecraft using a hand-held oxygen-jet gun to push himself out, attached to a 25-foot safety tether. NASA astronaut James McDivitt, on the mission with White, took photos of White in space from inside the capsule.
White later said the spacewalk was the most comfortable part of the mission, and said the order to end it was the “saddest moment” of his life, according to NASA.

Click here to read the full article on CNN.

10 Women Scientists Leading the Fight Against the Climate Crisis
LinkedIn
Rose Mutiso speaks at TEDSummit: A Community Beyond Borders. July 2019, Edinburgh, Scotland. Photo: Bret Hartman / TED | Flickr/TED Conference

By Tshiamo Mobe, Global Citizen

Climate change is an issue that affects everyone on the planet but women and girls are the ones suffering its effects the most. Why? Because women and girls have less access to quality education and later, job opportunities. These structural disadvantages keep them in poverty. In fact, women make up 70% of the world’s poor. In a nutshell, climate change impacts the poor the most and the poor are mostly women.

Poverty driven by and made worse by climate change also makes girls more susceptible to child marriage, because it drives hunger and girls getting married often means one less mouth to feed for their parents. Climate change also leads to geopolitical instability which, in turn, results in greater instances of violence — which we know disproportionately impacts women and girls.

Ironically, saving the planet has been made to seem a “women’s job”. This phenomenon, dubbed the “eco gender gap”, sees the burden of climate responsibility placed squarely on women’s shoulders through “green” campaigns and products that are overwhelmingly marketed to women.

There are several hypotheses for why this is. Firstly, women are the more powerful consumers (they drive 70-80% of all purchasing decisions). Secondly, they are disproportionately responsible, still, for the domestic sphere. And finally, going green is seen as a women’s job because women’s personalities are supposedly more nurturing and socially responsible.

Women should be involved in fighting the climate crisis at every level — from the kitchen to the science lab to the boardroom. Ruth Bader Ginsburg explained it best when she said: “Women belong in all places where decisions are being made.” However, women are underrepresented in the science field (including climate science), with just 30% of research positions held by women and fewer still holding senior positions. The Reuters Hot List of 1,000 scientists features just 122 women.

Having more women climate scientists could allow for an increased emphasis on understanding and providing solutions for some of the most far-reaching implications of climate change. Diversity in background and experiences allows for different perspectives. More perspectives allow for different research questions to arise or even a different approach to the same question.

There are, however, women all over the world in the fields of science, technology, engineering, and mathematics (STEM) that have made some incredible strides in the fight against the climate crisis, from fire-resistant coating to protect places prone to wildfires, to a water-storing park for a region usually overwhelmed by floods. Here are just some of the world’s incredible women scientists leading the way on tackling the climate crisis.

Click here to read the full article on Global Citizen.

Mars Had Liquid Water On Its Surface. Here’s Why Scientists Think It Vanished
LinkedIn
A close-up of Mars taken by NASA's Hubble Space Telescope. New research suggests that the red planet may be too small to have ever had large amounts of surface water.

By , NPR

All evidence points to the fact that Mars once had flowing water, but numerous flybys, orbiters, landers and rovers have confirmed one undeniable fact — any liquid water that was once on its surface is now long gone.

A study out of Washington University in St. Louis might have found the reason: Mars, which is about half the size of Earth, and just over one-tenth the mass of our own watery world, might just be too small.

One idea, the Mars Ocean Hypothesis, suggests that Mars not only had some liquid water, but a lot of it. But the new study’s co-author Kun Wang says his team’s finding, which was published this week in the Proceedings of the National Academy of Sciences, pours cold water on that notion.

“Mars’ fate was decided from the beginning,” Wang, an assistant professor of Earth and planetary sciences, said in a statement. “There is likely a threshold on the size requirements of rocky planets to retain enough water to enable habitability and plate tectonics.”

That’s because the lower mass and gravity of Mars makes it easier for volatile elements and compounds such as water to escape from its surface into space.

Led by Zhen Tian, a graduate student in Wang’s laboratory, the researchers looked at 20 Martian meteorites ranging in age from about 200 million years old to 4 billion years, dating to a time when the solar system was still in the chaos of formation.

The researchers analyzed a somewhat volatile element — potassium — to help understand how water would have behaved on the surface of Mars.

Speaking to NPR, Wang said the team measured the ratio of two isotopes of potassium — potassium-39 and potassium-41 — in the meteorites. In lower gravity environments, such as Mars, the potassium-39 is more easily lost to space, leaving behind a higher ratio of the heavier isotope, potassium-41. Water behaves in much the same way, indicating that most of it would have been lost to space during the formation of Mars.

It’s something Wang and his colleagues saw even in the oldest meteorites, suggesting that this was an issue for Martian water right from the beginning.

The team also looked at samples from the moon and from an asteroid, both much smaller and drier than either Earth or Mars, to study the potassium isotopes in them. They found a direct correlation between mass and the volatiles — or lack thereof — in the samples.

The liquid water that did remain on the Martian surface carved out the now-desiccated canyons, riverbeds and other formations that we see there today, Wang says. But that water, too, would likely have disappeared had it not been trapped as ice at the Martian poles as the climate on the planet became colder, he notes.

Click here to read the full article on NPR.

What we’ve been getting wrong about dinosaurs
LinkedIn
Dinosaurs survived and thrived for 165 million years -- far longer than the roughly 300,000 years modern humans have so far roamed the planet.

By Katie Hunt, CNN

Defined by their disappearance dinosaurs might appear to be evolutionary failures. Not so.

Dinosaurs survived and thrived for 165 million years — far longer than the roughly 300,000 years modern humans have so far roamed the planet.

They lived on every continent, munched on plants, snapped their jaws at insects, itched from fleas, suffered from disease, got into fights, snoozed, performed elaborate courtship rituals and looked after their young. The creatures were much more diverse — and downright bizarre — than what we might recall from childhood books.
Were it not for an asteroid strike 66 million years ago, the ancient creatures still might have dominated our world. And they still are here, in the form of birds we see around us today.

Scientists have discovered more in the past two decades than they had in the prior 200 years about how dinosaurs behaved and evolved. Here’s what’s new and different about what is known of dinosaurs.

How many dinosaurs were there?
The short answer: Lots.

Take T. Rex, the predator with banana-sized teeth that is perhaps the best studied dinosaur. Scientists believe that each T. rex generation was 20,000 individuals, and this adds up to a total of 2.5 billion during the 2.4 million years they are thought to have lived.

While it’s only an estimate and relies on lots of assumptions, it’s a good reminder that the fossil record only captures a tiny fraction of ancient life. The same team of researchers purports that for every 80 million adult T. rexs, there is only one clearly identifiable specimen in a museum.

Scientists have definitively identified around 900 dinosaur species — although there are plenty more potential species for which paleontologists don’t quite have enough bones or the fossils aren’t well preserved enough to truly designate them as such. And there are about 50 new dinosaurs discovered each year, inspiring many scientists to think we’re experiencing a golden age of paleontology.

Many, many more species existed — one estimate suggests that there were between 50,000 and 500,000, but we might never find their fossil remains.

So many species could exist because they were highly specialized, meaning different types of dinosaurs had different sources of food and could live in the same habitats without competing. For example, with unusually large eyes and hair-trigger hearing, Shuuvia deserti, a tiny desert-dwelling dinosaur evolved to hunt at night, while Mononykus had perplexingly stunted forelimbs, each of which had only one functional finger and claw — perhaps to eat ants or termites.

It’s worth pointing out, of course, that many of the dinosaurs you might be familiar with did not live together as one community. Stegosaurus and T. rex never co-existed, separated by 80 million years of evolution. In fact, the time separating Stegosaurus and Tyrannosaurus is greater than the time separating T. rex and you.
What did they look like?

The first dinosaur discoveries, the earliest more than 150 years ago, focused on the sensational: The big bones and skulls we know from museum atriums.

But dinosaurs came in all shapes and sizes. In fact, some of the most exciting finds in recent years have been tiny. In 2016, a tail belonging to a sparrow-sized creature could have danced in the palm of your hand was found preserved in three dimensions in a chunk of amber.

Click here to read the full article on CNN.

7 ways Einstein changed the world
LinkedIn
black and white photo of einstein looking at the camera

By , Live Science

Albert Einstein (1879-1955) is one of the most famous scientists of all time, and his name has become almost synonymous with the word “genius.”

While his reputation owes something to his eccentric appearance and occasional pronouncements on philosophy, world politics and other non-scientific topics, his real claim to fame comes from his contributions to modern physics, which have changed our entire perception of the universe and helped shape the world we live in today.

Here’s a look at some of the world-changing concepts we owe to Einstein.

Space-time

One of Einstein’s earliest achievements, at the age of 26, was his theory of special relativity — so-called because it deals with relative motion in the special case where gravitational forces are neglected. This may sound innocuous, but it was one of the greatest scientific revolutions in history, completely changing the way physicists think about space and time. In effect, Einstein merged these into a single space-time continuum. One reason we think of space and time as being completely separate is because we measure them in different units, such as miles and seconds, respectively. But Einstein showed how they are actually interchangeable, linked to each other through the speed of light — approximately 186,000 miles per second (300,000 kilometers per second).

Perhaps the most famous consequence of special relativity is that nothing can travel faster than light. But it also means that things start to behave very oddly as the speed of light is approached. If you could see a spaceship that was traveling at 80% the speed of light, it would look 40% shorter than when it appeared at rest. And if you could see inside, everything would appear to move in slow motion, with a clock taking 100 seconds to tick through a minute, according to Georgia State University’s HyperPhysics website. This means the spaceship’s crew would actually age more slowly the faster they are traveling.

E = mc^2

An unexpected offshoot of special relativity was Einstein’s celebrated equation E = mc^2, which is likely the only mathematical formula to have reached the status of cultural icon. The equation expresses the equivalence of mass (m) and energy (E), two physical parameters previously believed to be completely separate. In traditional physics, mass measures the amount of matter contained in an object, whereas energy is a property the object has by virtue of its motion and the forces acting on it. Additionally, energy can exist in the complete absence of matter, for example in light or radio waves. However, Einstein’s equation says that mass and energy are essentially the same thing, as long as you multiply the mass by c^2 — the square of the speed of light, which is a very big number — to ensure it ends up in the same units as energy.

This means that an object gains mass as it moves faster, simply because it’s gaining energy. It also means that even an inert, stationary object has a huge amount of energy locked up inside it. Besides being a mind-blowing idea, the concept has practical applications in the world of high-energy particle physics. According to the European Council for Nuclear Research (CERN), if sufficiently energetic particles are smashed together, the energy of the collision can create new matter in the form of additional particles.

Lasers

Lasers are an essential component of modern technology and are used in everything from barcode readers and laser pointers to holograms and fiber-optic communication. Although lasers are not commonly associated with Einstein, it was ultimately his work that made them possible. The word laser, coined in 1959, stands for “light amplification by stimulated emission of radiation” — and stimulated emission is a concept Einstein developed more than 40 years earlier, according to the American Physical Society. In 1917, Einstein wrote a paper on the quantum theory of radiation that described, among other things, how a photon of light passing through a substance could stimulate the emission of further photons.

Einstein realized that the new photons travel in the same direction, and with the same frequency and phase, as the original photon. This results in a cascade effect as more and more virtually identical photons are produced. As a theoretician, Einstein didn’t take the idea any further, while other scientists were slow to recognize the enormous practical potential of stimulated emission. But the world got there in the end, and people are still finding new applications for lasers today, from anti-drone weapons to super-fast computers.

Black holes and wormholes

Einstein’s theory of special relativity showed that space-time can do some pretty weird things even in the absence of gravitational fields. But that’s only the tip of the iceberg, as Einstein discovered when he finally succeeded in adding gravity into the mix, in his theory of general relativity. He found that massive objects like planets and stars actually distort the fabric of space-time, and it’s this distortion that produces the effects we perceive as gravity.

Einstein explained general relativity through a complex set of equations, which have an enormous range of applications. Perhaps the most famous solution to Einstein’s equations came from Karl Schwarzschild’s solution in 1916 — a black hole. Even weirder is a solution that Einstein himself developed in 1935 in collaboration with Nathan Rosen, describing the possibility of shortcuts from one point in space-time to another. Originally dubbed Einstein-Rosen bridges, these are now known to all fans of science fiction by the more familiar name of wormholes.

The expanding universe

One of the first things Einstein did with his equations of general relativity, back in 1915, was to apply them to the universe as a whole. But the answer that came out looked wrong to him. It implied that the fabric of space itself was in a state of continuous expansion, pulling galaxies along with it so the distances between them were constantly growing. Common sense told Einstein that this couldn’t be true, so he added something called the cosmological constant to his equations to produce a well-behaved, static universe.

But in 1929, Edwin Hubble’s observations of other galaxies showed that the universe really is expanding, apparently in just the way that Einstein’s original equations predicted. It looked like the end of the line for the cosmological constant, which Einstein later described as his biggest blunder. That wasn’t the end of the story, however. Based on more refined measurements of the expansion of the universe, we now know that it’s speeding up, rather than slowing down as it ought to in the absence of a cosmological constant. So it looks as though Einstein’s “blunder” wasn’t such an error after all.

Click here to read the full article on Live Science.

These Engineers Have Invented an Entirely New Approach to Recycling Plastic
LinkedIn
photo of recycling products

By DAVID NIELD, Science Alert.

Our planet and everything that lives on it is buckling under the weight of all the plastic waste we’re producing. The volume of these non-biodegradable materials discarded after use is only increasing, so we need new ways to tackle them, and fast.

A new study demonstrates the proof-of-concept of an entirely new approach to plastic recycling, inspired by the way nature naturally ‘recycles’ the components of organic polymers present in our environment.

The approach takes guidance from the fact that proteins within organic polymers are constantly broken down into parts and reassembled into different proteins, without losing the quality of the building blocks. In essence, when it comes to recycling plastic – a synthetic polymer – without degrading it, we have to think smaller.

Proteins are one of the main organic compounds that act as building blocks for everything biological. They’re long chains of molecules (or monomers) known as amino acids, and researchers think that the way these molecules can be broken up and reconfigured suggests a potential strategy for recycling synthetic polymers.

“A protein is like a string of pearls, where each pearl is an amino acid,” says materials scientist Simone Giaveri, from the École polytechnique fédérale de Lausanne (EPFL) in Switzerland.

“Each pearl has a different color, and the color sequence determines the string structure and consequently its properties. In nature, protein chains break up into the constituent amino acids, and cells put such amino acids back together to form new proteins – that is, they create new strings of pearls with a different color sequence.”

The researchers have called their approach “nature-inspired circular-economy recycling”, or NaCRe for short.

In lab tests, the team was able to divide selected proteins into amino acids, then assemble them into new proteins with different structures and uses. In one case, they turned the proteins from silk into green fluorescent protein, which is a glowing tracer used in biomedical research. Despite this deconstruction and reconstruction, the quality of the proteins remains constant.

Click here to read the full article on Science Alert.

Over a quarter of stars like our sun might eat their own planets
LinkedIn
A binary system made up of one sun-like star and a smaller dwarf star surrounded by stars

By , C|Net

Astronomers say they have strong evidence that up to a quarter of all sun-like stars might have a nasty habit of making massive meals out of planets in their systems.

But don’t worry. This turns out to be good news for our chances of becoming a stellar snack and could even be helpful in the search for another Earth elsewhere in the cosmos.

In recent years, as scientists have studied more binary star systems, in which two sibling stars orbit each other, they’ve found these pairings to be more different than expected. In particular, the two stars’ chemical makeups are often different from each other. This contradicts the theoretical assumption that each was formed from the same primordial stew and the duo should therefore be more or less identical in the chemical sense.

An international team of astronomers spanning four continents studied a sample of 107 binary pairs of sun-like stars. They found that 33 of the binaries were “chemically anomalous” with high levels of iron that don’t quite jibe with the current understanding of how stars evolve. The two leading potential explanations for this stellar weirdness is that twin stars can somehow be made up of different stuff from birth, or that one of the stars gobbles up a planet or three later on. The team says their work points strongly toward the latter option being more likely.

“The observations are consistent with a scenario in which stars are being polluted by Earth-like material accreted from their planetary systems,” reads a paper published In Nature Astronomy by the group, led by Lorenzo Spina from the Italian National Observatory in Padova.

Before you worry about the sun showing signs of peckishness, Spina and colleagues say this revelation is actually good news for planets in our own solar system, which has always been remarkably stable. Our sun shows little sign of chomping down on Mercury anytime soon, at least not before it becomes a red supergiant and expands to swallow most of the inner solar system, including Earth.

Click here to read the full article on C|Net.

The NMSDC Equity Honors 2023–Applications Now Open
LinkedIn
gold cup winner on bokeh background, 3D illustration

The National Minority Supplier Development Council (NMSDC) Equity Honors awards are presented to corporate chief officers who have been recognized by their peers as the true leaders at the vanguard of economic equity and minority business integration.

Submit an application for your CEO, COO, CFO, CIO, CMO, CDO, and CPO of the Year. All applications* must be started** by Dec. 20 to be considered.

Submit Application Here!

*Qualified applications submitted for The Equity Honors in 2022 have been cloned for consideration for the 2023 Equity Honors. Simply log into the NMSDC Awards Portal and update your application, then submit. Previous winners of The Equity Honors are ineligible to apply again for a minimum of 3 years.

**We will reopen the applications in March of 2023 to collect 2022 comparative data that will complete the application. All applications that have been started by Dec. 20 will constitute The Equity Honors Nominees for 2023 with nominees highlighted on the Forum website and invited to the 2023 Minority Business Economic Forum.

For more information about NMSDC visit, nmsdc.org

Diversity Alliance for Science West Coast Conference Sells Out Again
LinkedIn

Diversity Alliance for Science (DA4S), the leading life science-focused non-profit supplier diversity organization, recently celebrated the 10th anniversary of its annual West Coast Conference in beautiful Laguna, California. This exciting 2.5-day event connected representatives from the world’s leading pharmaceutical, healthcare and biotechnology corporations with CEOs from life science-industry-focused small and diverse businesses.

DA4S prides itself on what it calls its “secret sauce,” which is the unparalleled networking opportunities its conferences and events provide, and this year’s West Coast Conference delivered on that and more. The conference kicked off with a memorable member’s-only day that provided a full day of networking and relationship building, including golf and for all the non-golfers, an afternoon of team building fun. The energy from member’s-only day carried into the rest of the conference, which featured a line-up of engaging and relevant content for all attendees — from panel discussions and a fireside chat with executives from leading life science corporations to inspirational guest speakers, which included Princess Sarah Culberson, who awed the plenary session audience with her keynote presentation. Success stories were also shared, suppliers took the stage in our Shark Tank kick-off and over 400 matchmaking meetings took place in a hybrid format.

There was certainly not a shortage of opportunities to network and connect between the roundtables, matchmaking and evening events. Attendees had ample opportunities to re-engage with existing contacts and meet new ones. Throughout the last 15 years since its inception, DA4S has established itself as the premier platform for connecting small and diverse businesses with corporations specific to the life science industry.

DA4S is really a one-of-a-kind organization and once you attend one of their events, you start to understand why people rave about it — it really is like a family and the energy is contagious.

DA4S is looking forward to expanding its membership and services in 2023 for suppliers and corporate members! To learn more, please visit diversityallianceforscience.com

Alight

Alight Solutions

Leidos

Robert Half