Ketchup on Mars: Heinz preps for a future with condiments on the red planet

LinkedIn
Heinz Ketchup Bottle in space

By , C|Net

Matt Damon in The Martian was one letter off. Instead of potatoes, he should have been growing tomatoes, with an eye toward making space-ketchup. Because what’s the point of French fries on Mars if you don’t have anything to dip them in?

Heinz, a brand of ketchup you may have heard of, enlisted a team of astrobiologists to answer the most pressing question of our time: Will future human settlers on Mars be able to make their own ketchup?

Heinz collaborated with 14 astrobiologists at the Aldrin Space Institute at Florida Tech to grow tomatoes in a simulated Martian soil.

“The team successfully yielded a crop of Heinz tomatoes, from the brand’s proprietary tomato seeds, with the exacting qualities that pass the rigorous quality and taste standards to become its iconic ketchup,” the company said in a statement on Monday.

You can’t buy a bottle of the Heinz Marz Edition ketchup, but you can take comfort in knowing your great-great-(great?)-grandchildren living inside their Muskville domes on the red planet will be able to slather some of the good stuff on their burger buns.

While this is a clever bit of marketing, there was also some serious science happening.

“Before now, most efforts around discovering ways to grow in Martian-simulated conditions are short-term plant growth studies. What this project has done is look at long-term food harvesting. Achieving a crop that is of a quality to become Heinz Tomato Ketchup was the dream result and we achieved it,” said astrobiologist Andrew Palmer, who led the two-year project.

Click here to read the full article on C|Net.

Raising Our Voices for Diversity in the Geosciences
LinkedIn
A geologist working underground

By Lucila Houttuijn Bloemendaal, Katarena Matos, Kendra Walters, and Aditi Sengupta

Almost 50 years ago, in June 1972, attendees at the First National Conference on Minority Participation in Earth Sciences and Mineral Engineering [Gillette and Gillette, 1972] held one of the first formal discussions on the lack of diversity in the geosciences.

Unfortunately, despite the many conversations since then addressing diversity, equity, and inclusion (DEI), the geosciences still face many of the problems cited in that meeting. These problems include, for example, difficulty recruiting youth from marginalized groups into a field that is often hostile to them and scientists from underrepresented backgrounds routinely needing to go above and beyond their peers to prove their professional value and right to belong.

Clearly, drafting statements in support of diversity—as many institutions have done—is not enough to effect change in the geosciences. Individuals and institutions must engage deeply and with a long-term mindset to ensure sustainable efforts that translate to real, personal success for geoscientists from a diversity of backgrounds. In addition, the community must continue to create spaces for conversations that highlight and share best practices focused on improving DEI.

As members of AGU’s Voices for Science 2019 cohort, we learned several effective methods of science communication. For example, we learned that by sharing lessons learned and blueprints for action with broader audiences, we can more effectively use our voices and power to demand real, tangible goals to make the geosciences inclusive and accessible. From among the 2019 cohort, a small team of scientists from a variety of fields and career stages thus convened a town hall at AGU’s Fall Meeting 2019 to discuss improving DEI. At the town hall, titled “Power of Science Lies in Its Diverse Voices,” panelists highlighted their approaches and work to increase diversity in the geosciences for an audience of roughly 100 attendees.

To make the town hall an example of a diverse event, invited panelists represented a wide array of fields, nationalities, ethnicities, genders, and career paths and stages. Below, we highlight the advice and work of the panelists, Asmeret Asefaw Berhe, Sujata Emani, Heather Handley, Tamara Marcus, Bahareh Sorouri, and Robert Ulrich, to provide avenues for readers to promote diversity, incentivize DEI work, and enact change in their own fields, institutions, and lives.

Continue on to EOS: Science News by AGU to read the full article.

NASA is training human-like robots to explore caves on Mars
LinkedIn
A NASA project called BRAILLE is now working on exploring Mars-like caves that already exist on Earth in order to hone key technologies for future missions.

BY SOPHIE LEWIS, CBS News

When searching for signs of life on other planets, scientists say caves are a crucial place to look. But how can a team on Earth effectively explore intricate, dark, unfamiliar landscapes on another world?

NASA and Boston Dynamics have found an answer: Fully autonomous robots. Caves are one of the most likely places to find signs of both current and past life on other planets because they are capable of protecting life from cosmic rays and extreme temperature fluctuations around our solar system. A NASA project called BRAILLE is now working on exploring Mars-like caves that already exist on Earth in order to hone key technologies for future missions.

According to researchers, the project has enabled the first-ever fully autonomous robotic exploration of these types of caves, which are several hundred meters long and limit communication with the surface. As the robots explore, with no prior information about the environment, a team of researchers outside the cave simultaneously performs actions that scientists on Earth would be executing during a real Martian mission.

The research, which project lead Ali Agha said could “fundamentally change how we think about future missions,” is now in year three of four in its quest to journey to the moon, the red planet and beyond.

But researchers are interested in exploring caves for another reason beyond finding signs of life: caves provide obvious natural shelters for future astronauts exploring Mars or the moon.

“Future potential human exploration missions can benefit from robots in many different ways,” Agha told CBS News. “Particularly, robots can be sent in precursor missions to provide more information about the destination before humans land on those destinations. In addition, robots can accompany astronauts during the missions to help with scouting certain terrains or with logistics and many tasks that can make astronauts’ missions safer and more efficient.”

So, how is designing a Mars robot different from designing an Earth robot? They are similar in a lot of ways, Agha said, especially when it comes to the AI robot brain, called NeBula, and its ability to process information and make decisions when they don’t have contact with scientists on Earth.

Click here to read the full article on CBS News.

The Cow That Could Feed the Planet
LinkedIn
Mosa Meat has recruited a global team of lab technicians and biologists to develop, build and run its scaled-up operations. Rui Hueber, checks the health of recent cell samples. Ricardo Cases for TIME

BY ARYN BAKER/MAASTRICHT, Time

The cows in Farmer John’s pasture lead an idyllic life. They roam through tree-shaded meadows, tearing up mouthfuls of clover while nursing their calves in tranquility.

Tawny brown, compact and muscular, they are Limousins, a breed known for the quality of its meat and much sought-after by the high-end restaurants and butchers in the nearby food mecca of Maastricht, in the southernmost province of the Netherlands. In a year or two, meat from these dozen cows could end up on the plates of Maastricht’s better-known restaurants, but the cows themselves are not headed for the slaughterhouse. Instead, every few months, a veterinarian equipped with little more than a topical anesthetic and a scalpel will remove a peppercorn-size sample of muscle from their flanks, stitch up the tiny incision and send the cows back to their pasture.

The biopsies, meanwhile, will be dropped off at a lab in a nondescript warehouse in Maastricht’s industrial quarter, five miles away, where, when I visit in July, cellular biologist Johanna Melke is already working on samples sent in a few days prior. She swirls a flask full of a clear liquid flecked with white filaments—stem cells isolated from the biopsy and fed on a nutrient-dense growth medium. In a few days, the filaments will thicken into tubes that look something like short strands of spaghetti. “This is fat,” says Melke proudly. “Fat is really important. Without fat, meat doesn’t taste as good.”

On the opposite side of the building, other scientists are replicating the process with muscle cells. Like the fat filaments, the lean muscle cells will be transferred to large bioreactors—temperature- and pressure-controlled steel vessels—where, bathed in a nutrient broth optimized for cell multiplication, they will continue to grow. Once they finish the proliferation stage, the fat and the muscle tissue will be sieved out of their separate vats and reunited into a product resembling ground hamburger meat, with the exact same genetic code as the cows in Farmer John’s pasture. (The farmer has asked to go by his first name only, in order to protect his cows, and his farm, from too much media attention.)

That final product, identical to the ground beef you are used to buying in the grocery store in every way but for the fact that it was grown in a reactor instead of coming from a butchered cow, is the result of years of research, and could help solve one of the biggest conundrums of our era: how to feed a growing global population without increasing the greenhouse-gas emissions that are heating our planet past the point of sustainability. “What we do to cows, it’s terrible,” says Melke, shaking her head. “What cows do to the planet when we farm them for meat? It’s even worse. But people want to eat meat. This is how we solve the problem.”

When it comes to the importance of fat in the final product, Melke admits to a slight bias. She is a senior scientist on the Fat Team, a small group of specialists within the larger scientific ecosystem of Mosa Meat, the Maastricht-based startup whose founders introduced the first hamburger grown from stem cells to the world eight years ago. That burger cost $330,000 to produce, and now Melke’s Fat Team is working with the Muscle Team, the (stem cell) Isolation Team and the Scale Team, among others, to bring what they call cell-cultivated meat to market at an affordable price.

They are not the only ones. More than 70 other startups around the world are courting investors in a race to deliver lab-grown versions of beef, chicken, pork, duck, tuna, foie gras, shrimp, kangaroo and even mouse (for cat treats) to market. Competition is fierce, and few companies have allowed journalists in for fear of risks to intellectual property. Mosa Meat granted TIME exclusive access to its labs and scientists so the process can be better understood by the general public.

Click here to read the full article on Time.

3 Things To Know About What Scientists Say About Our Future Climate
LinkedIn
climate control post. hands holding a world globe

By , NPR

More than 200 climate scientists just released a stark look at how fast the climate is warming, showing heat waves, extreme rain and intense droughts are on the rise. The evidence for warming is “unequivocal” but the extent of future disasters will be determined by how fast governments can cut heat-trapping emissions. Here are the top findings from the report.

#1 Humans are causing rapid and widespread warming
Carbon dioxide in the atmosphere has now reached the highest level in at least the past 2 million years. As a result, temperatures are warming quickly. Since 1970, global temperatures have increased faster than in any other 50-year period in the last 2,000 years. Some parts of the globe, like the poles, are warming even faster.

#2 Extreme weather is on the rise and will keep getting worse
Heat waves are more frequent and intense. Storms are dumping more rainfall, causing floods. Droughts are getting hotter and drier. Scientists are finding these trends are directly linked to the human influence on the climate and they’re getting worse.

#3 If humans cut emissions, the worst impacts are avoidable
While the planet will continue warm in the near-term, scientists say there is still time to prevent catastrophic climate change. That would mean a rapid drop in emissions from power plants and cars over the next few decades, essentially halting the use of fossil fuels.

Click here to read the full article on NPR.

Scientists Partially Restored a Blind Man’s Sight With New Gene Therapy
LinkedIn
In previous studies, researchers have been able to treat a genetic form of blind ness called Leber congenital amaurosis, by fixing a faulty gene that would otherwise cause photoreceptors to gradually degenerate.

By Carl Zimmer, Yahoo! News

A team of scientists announced Monday that they had partially restored the sight of a blind man by building light-catching proteins in one of his eyes. Their report, which appeared in the journal Nature Medicine, is the first published study to describe the successful use of this treatment. “Seeing for the first time that it did work — even if only in one patient and in one eye — is exciting,” said Ehud Isacoff, a neuroscientist at the University of California, Berkeley, who was not involved in the study.

The procedure is a far cry from full vision. The volunteer, a 58-year-old man who lives in France, had to wear special goggles that gave him the ghostly perception of objects in a narrow field of view. But the authors of the report say that the trial — the result of 13 years of work — is a proof of concept for more effective treatments to come.

“It’s obviously not the end of the road, but it’s a major milestone,” said José-Alain Sahel, an ophthalmologist who splits his time between the University of Pittsburgh and the Sorbonne in Paris.

Sahel and other scientists have tried for decades to find a cure for inherited forms of blindness. These genetic disorders rob the eyes of essential proteins required for vision.

When light enters the eye, it is captured by photoreceptor cells. The photoreceptors then send an electrical signal to their neighbors, called ganglion cells, which can identify important features like motion. They then send signals of their own to the optic nerve, which delivers the information to the brain.

In previous studies, researchers have been able to treat a genetic form of blindness called Leber congenital amaurosis, by fixing a faulty gene that would otherwise cause photoreceptors to gradually degenerate.

But other forms of blindness cannot be treated so simply, because their victims lose their photoreceptors completely.

“Once the cells are dead, you cannot repair the gene defect,” Sahel said.

For these diseases, Sahel and other researchers have been experimenting with a more radical kind of repair. They are using gene therapy to turn ganglion cells into new photoreceptor cells, even though they don’t normally capture light.

The scientists are taking advantage of proteins derived from algae and other microbes that can make any nerve cell sensitive to light.

In the early 2000s, neuroscientists figured out how to install some of these proteins into the brain cells of mice and other lab animals by injecting viruses carrying their genes. The viruses infected certain types of brain cells, which then used the new gene to build light-sensitive channels.

Originally, researchers developed this technique, called optogenetics, as a way to probe the workings of the brain. By inserting a tiny light into the animal’s brain, they could switch a certain type of brain cell on or off with the flick of a switch. The method has enabled them to discover the circuitry underlying many kinds of behavior.

Click here to read the full article on Yahoo! News.

Why Mars? The fascination with exploring the red planet
LinkedIn
A rendering of the planet Mars

By Ashley Strickland of CNN

The mystique of Mars is one that humans can’t seem to resist. The red planet has easily captured our interest for centuries, heavily featured in science fiction books and films and the subject of robotic exploration since the 1960s.

In February, three spacecraft arrived at Mars after departing from different launch points on Earth in July. These myriad missions seek to understand our planetary neighbor and unlock the secrets of its past to prepare for future exploration.
The three missions — China’s Tianwen-1, the United Arab Emirates’ Hope Probe and NASA’s Perseverance rover — took advantage of an alignment between Mars and Earth that occurs every 26 months, allowing for quicker and more efficient trips when the two planets are on the same side of the sun.
The Hope Probe will stay in orbit for a Martian year — equivalent to 687 days on Earth — to gather data about Mars’ atmosphere.
Tianwen-1, whose name means “Quest for Heavenly Truth,” is orbiting the planet before landing a rover on the surface, with the hope that it can gather important information about the Martian soil, geological structure, environment, atmosphere and signs of water.
The Perseverance rover is searching for signs of ancient life on Mars and will collect samples to be returned to Earth by future missions.
Perseverance also carries the names of nearly 11 million people etched on three silicon chips. She is a robotic scientist exploring Mars on behalf of humanity and is able to share what she sees and hears through 23 cameras, including video, and two microphones.
If three missions arriving at Mars within days of each other seems excessive, imagine explorers seeing Earth for the first time and wanting to understand all aspects of its past, climate, water, geology and life systems. It takes time and different capabilities to explore aspects of an entire planet to know the real story.
Photo Credit: Adobe Stock
Genetic tricks of the longest-lived animals
LinkedIn
a small bat about a third the size of a mouse, was recaptured, still hale and hearty, 41 years after it was initially banded to check its genetic make up

By , KNOWABLE MAGAZINE

Life, for most of us, ends far too soon—hence the effort by biomedical researchers to find ways to delay the aging process and extend our stay on Earth. But there’s a paradox at the heart of the science of aging: The vast majority of research focuses on fruit flies, nematode worms and laboratory mice, because they’re easy to work with and lots of genetic tools are available. And yet, a major reason that geneticists chose these species in the first place is because they have short lifespans. In effect, we’ve been learning about longevity from organisms that are the least successful at the game.

Today, a small number of researchers are taking a different approach and studying unusually long-lived creatures—ones that, for whatever evolutionary reasons, have been imbued with lifespans far longer than other creatures they’re closely related to. The hope is that by exploring and understanding the genes and biochemical pathways that impart long life, researchers may ultimately uncover tricks that can extend our own lifespans, too.

Everyone has a rough idea of what aging is, just from experiencing it as it happens to themselves and others. Our skin sags, our hair goes gray, joints stiffen and creak—all signs that our components—that is, proteins and other biomolecules—aren’t what they used to be. As a result, we’re more prone to chronic diseases such as cancer, Alzheimer’s and diabetes—and the older we get, the more likely we are to die each year. “You live, and by living you produce negative consequences like molecular damage. This damage accumulates over time,” says Vadim Gladyshev, who researches aging at Harvard Medical School. “In essence, this is aging.”

This happens faster for some species than others, though—the clearest pattern is that bigger animals tend to live longer lives than smaller ones. But even after accounting for size, huge differences in longevity remain. A house mouse lives just two or three years, while the naked mole rat, a similar-sized rodent, lives more than 35. Bowhead whales are enormous—the second-largest living mammal—but their 200-year lifespan is at least double what you’d expect given their size. Humans, too, are outliers: We live twice as long as our closest relatives, the chimpanzees.

Bats above average
Perhaps the most remarkable animal Methuselahs are among bats. One individual of Myotis brandtii, a small bat about a third the size of a mouse, was recaptured, still hale and hearty, 41 years after it was initially banded. That is especially amazing for an animal living in the wild, says Emma Teeling, a bat evolutionary biologist at University College Dublin who coauthored a review exploring the value of bats in studying aging in the 2018 Annual Review of Animal Biosciences. “It’s equivalent to about 240 to 280 human years, with little to no sign of aging,” she says. “So bats are extraordinary. The question is, Why?”

There are actually two ways to think about Teeling’s question. First: What are the evolutionary reasons that some species have become long-lived, while others haven’t? And, second: What are the genetic and metabolic tricks that allow them to do that?

Answers to the first question, at least in broad brushstrokes, are becoming fairly clear. The amount of energy that a species should put toward preventing or repairing the damage of living depends on how likely an individual is to survive long enough to benefit from all that cellular maintenance. “You want to invest enough that the body doesn’t fall apart too quickly, but you don’t want to over-invest,” says Tom Kirkwood, a biogerontologist at Newcastle University in the UK. “You want a body that has a good chance of remaining in sound condition for as long as you have a decent statistical probability to survive.”

This implies that a little scurrying rodent like a mouse has little to gain by investing much in maintenance, since it will probably end up as a predator’s lunch within a few months anyway. That low investment means it should age more quickly. In contrast, species such as whales and elephants are less vulnerable to predation or other random strokes of fate and are likely to survive long enough to reap the benefits of better-maintained cellular machinery. It’s also no surprise that groups such as birds and bats—which can escape enemies by flying—tend to live longer than you’d expect given their size, Kirkwood says. The same would apply for naked mole rats, which live their lives in subterranean burrows where they are largely safe from predators.

But the question that researchers most urgently want to answer is the second one: How do long-lived species manage to delay aging? Here, too, the outline of an answer is beginning to emerge as researchers compare species that differ in longevity. Long-lived species, they’ve found, accumulate molecular damage more slowly than shorter-lived ones do. Naked mole rats, for example, have an unusually accurate ribosome, the cellular structure responsible for assembling proteins. It makes only a tenth as many errors as normal ribosomes, according to a study led by Vera Gorbunova, a biologist at the University of Rochester. And it’s not just mole rats: In a follow-up study comparing 17 rodent species of varying longevity, Gorbunova’s team found that the longer-lived species, in general, tended to have more accurate ribosomes.

The proteins of naked mole rats are also more stable than those of other mammals, according to research led by Rochelle Buffenstein, a comparative gerontologist at Calico, a Google spinoff focused on aging research. Cells of this species have greater numbers of a class of molecules called chaperones that help proteins fold properly. They also have more vigorous proteasomes, structures that dispose of defective proteins. Those proteasomes become even more active when faced with oxidative stress, reactive chemicals that can damage proteins and other biomolecules; in contrast, the proteasomes of mice become less efficient, thus allowing damaged proteins to accumulate and impair the cell’s workings.

DNA, too, seems to be maintained better in longer-lived mammals. When Gorbunova’s team compared the efficiency with which 18 rodent species repaired a particular kind of damage (called a double-strand break) in their DNA molecules, they found that species with longer lifespans, such as naked mole rats and beavers, outperformed shorter-lived species such as mice and hamsters. The difference was largely due to a more powerful version of a gene known as Sirt6, which was already known to affect lifespan in mice.

Click here to read the full article on KNOWABLE MAGAZINE.

Meet Afro-Latina Scientist Dr. Jessica Esquivel
LinkedIn
Dr. Jessica Esquivel

By Erica Nahmad, Be Latina

It’s undeniable that representation matters and the idea of what a scientist could or should look like is changing, largely thanks to pioneers like Afro-Latina scientist Dr. Jessica Esquivel, who is breaking barriers for women in STEM one step at a time.

Dr. Esquivel isn’t just extraordinary because of what she is capable of as an Afro-Latina astrophysicist — she’s also extraordinary in her vulnerability and relatability. She’s on a mission to break barriers in science and to show the humanity behind scientists.

Dr. Esquivel makes science accessible to everyone, no matter what you look like or where you come from. As one of the only Afro-Latina scientists in her field, and one of the only women who looked like her to pursue a Ph.D. in physics, Dr. Esquivel knows a thing or two about the importance of representation, especially in STEM fields and science labs.

Women make up only 28% of the science, technology, engineering, and math workforce in the U.S. Those disparities are even more severe when you start to look at minority populations.

“When you start looking at the intersections of race and gender and then even sexuality, those numbers drop significantly,” Esquivel told CBS Chicago. “There are only about 100 to 150 black women with their Ph.D. in physics in the country!”

Fighting against the isolation of uniqueness
Dr. Jessica Esquivel recalls being a nontraditional student and being “the only” when she entered graduate school for physics — the only woman in her class, the only Black, the only Mexican, the only lesbian — and all of that made her feel very isolated.

“On top of such rigorous material, the isolation and otherness that happens due to being the only or one of few is an added burden marginalized people, especially those with multiple marginalized identities, have to deal with,” Dr. Esquivel told BeLatina in an email interview. On top of feeling like an outsider, isolation was also consuming. “Being away from family at a predominately white institution, where the number of microaggressions was constant, really affected my mental health and, in turn, my coursework and research, so it was important to surround myself with mentors who supported me and believed in my ability to be a scientist.”

While she anticipated that the physics curriculum would be incredibly challenging, she was definitely not prepared for how hard the rest of the experience would be and how it would impact her as a student and a scientist.

The challenges she faced professionally and personally made her realize early on just how crucial representation is in academia and all fields, but especially in STEM. “It was really impactful for me to learn that there were other Black women who had made it out of the grad school metaphorical trenches. It’s absolutely important to create inclusive spaces where marginalized people, including Black, Latina, and genderqueer people, can thrive,” she said.

“The secrets of our universe don’t discriminate, these secrets can and should be unraveled by all those who wish to embark on that journey, and my aim is to clear as many barriers and leave these physics spaces better than I entered them.”

When inclusion and equal opportunities are the ultimate goal
Dr. Jessica Esquivel isn’t just dedicating her time and energy to studying complex scientific concepts — think quantum entanglement, space-time fabric, the building blocks of the universe… some seriously abstract physics concepts straight out of a sci-fi movie, as she explains. On top of her research, she put in so much extra work to show people, especially younger generations of women of color, that the physics and STEM world is not some old white man’s club where this prestigious knowledge is only available to them. Dr. Esquivel is an expert in her field; she knows things that no one else currently knows and has the ability and the power to transfer that knowledge to others and pass it down to others. There is a place for everyone, including people who look like her, in the STEM world, and she’s on a mission to inspire others while working to increase diversity, equity, and inclusion in the STEM space.

“Many of us who are underrepresented in STEM have taken on the responsibility of spearheading institutional change toward more just, equitable, and inclusive working environments as a form of survival,” she explains. “I’m putting in more work on top of the research I do because I recognize that I do better research if I feel supported and if I feel like I can bring my whole self to my job. My hope is that one day Black and brown women and gender-queer folks interested in science can pursue just that and not have to fight for their right to be a scientist or defend that they are worthy of doing science.”

Click here to read the full article on Be Latina.

Terrence Howard Claims He Invented ‘New Hydrogen Technology’ To Defend Uganda
LinkedIn
Terrence Howard on the red carpet for

By BET

Former Empire actor and red carpet scientist Terrence Howard is currently visiting Uganda as part of a government effort to draw investors from the African diaspora to the nation. He is claiming he has what it needs to change the world.

According to Vice, Howard made a lofty presentation on Wednesday, July 13, addressing officials and claiming to have developed a “new hydrogen technology.”

Famously, Howard argued in Rolling Stone that one times one equals two, and now he says his new system, The Lynchpin, would be able to clean the ocean and defend Uganda from exploitation via cutting-edge drone technology. The proprietary technology he announced in a 2021 press release is said to hold 86 patents.

“I was able to identify the grand unified field equation they’ve been looking for and put it into geometry,” he shared in front of an audience of Ugandan dignitaries. “We’re talking about unlimited bonding, unlimited predictable structures, supersymmetry.”

“The Lynchpins are now able to behave as a swarm, as a colony, that can defend a nation, that can harvest food, that can remove plastics from the ocean, that can give the children of Uganda and the people of Uganda an opportunity to spread this and sell these products throughout the world,” he added.

Howard, who briefly quit acting in 2019 only to come out of retirement in 2020, has seemingly made rewriting history a personal side hustle. According to Vice, he made nebulous claims that rapidly went viral on social media, saying, “I’ve made some discoveries in my own personal life with the science that, y’know, Pythagoras was searching for. I was able to open up the flower of life properly and find the real wave conjugations we’ve been looking for 10,000 years.”

While his latest claims have yet to be clarified, Howard was invited to speak by Frank Tumwebaze, the minister of agriculture, animal industries, and fishery.

Click here to read the full article on BET.

Doctors using AI catch breast cancer more often than either does alone
LinkedIn
scan of breast tissue with cancer

By , MIT Technology Review

Radiologists assisted by an AI screen for breast cancer more successfully than they do when they work alone, according to new research. That same AI also produces more accurate results in the hands of a radiologist than it does when operating solo.

The large-scale study, published this month in The Lancet Digital Health, is the first to directly compare an AI’s performance in breast cancer screening according to whether it’s used alone or to assist a human expert. The hope is that such AI systems could save lives by detecting cancers doctors miss, free up radiologists to see more patients, and ease the burden in places where there is a dire lack of specialists.

The software being tested comes from Vara, a startup based in Germany that also led the study. The company’s AI is already used in over a fourth of Germany’s breast cancer screening centers and was introduced earlier this year to a hospital in Mexico and another in Greece.

The Vara team, with help from radiologists at the Essen University Hospital in Germany and the Memorial Sloan Kettering Cancer Center in New York, tested two approaches. In the first, the AI works alone to analyze mammograms. In the other, the AI automatically distinguishes between scans it thinks look normal and those that raise a concern. It refers the latter to a radiologist, who would review them before seeing the AI’s assessment. Then the AI would issue a warning if it detected cancer when the doctor did not.

To train the neural network, Vara fed the AI data from over 367,000 mammograms—including radiologists’ notes, original assessments, and information on whether the patient ultimately had cancer—to learn how to place these scans into one of three buckets: “confident normal,” “not confident” (in which no prediction is given), and “confident cancer.” The conclusions from both approaches were then compared with the decisions real radiologists originally made on 82,851 mammograms sourced from screening centers that didn’t contribute scans used to train the AI.

The second approach—doctor and AI working together—was 3.6% better at detecting breast cancer than a doctor working alone, and raised fewer false alarms. It accomplished this while automatically setting aside scans it classified as confidently normal, which amounted to 63% of all mammograms. This intense streamlining could slash radiologists’ workloads.

After breast cancer screenings, patients with a normal scan are sent on their way, while an abnormal or unclear scan triggers follow-up testing. But radiologists examining mammograms miss 1 in 8 cancers. Fatigue, overwork, and even the time of day all affect how well radiologists can identify tumors as they view thousands of scans. Signs that are visually subtle are also generally less likely to set off alarms, and dense breast tissue—found mostly in younger patients—makes signs of cancer harder to see.

Radiologists using the AI in the real world are required by German law to look at every mammogram, at least glancing at those the AI calls fine. The AI still lends them a hand by pre-filling reports on scans labeled normal, though the radiologist can always reject the AI’s call.

Thilo Töllner, a radiologist who heads a German breast cancer screening center, has used the program for two years. He’s sometimes disagreed when the AI classified scans as confident normal and manually filled out reports to reflect a different conclusion, but he says “normals are almost always normal.” Mostly, “you just have to press enter.”

Mammograms the AI has labeled as ambiguous or “confident cancer” are referred to a radiologist—but only after the doctor has offered an initial, independent assessment.

Radiologists classify mammograms on a 0 to 6 scale known as BI-RADS, where lower is better. A score of 3 indicates that something is probably benign, but worth checking up on. If Vara has assigned a BI-RADS score of 3 or higher to a mammogram the radiologist labels normal, a warning appears.

AI generally excels at image classification. So why did Vara’s AI on its own underperform a lone doctor? Part of the problem is that a mammogram alone can’t determine whether someone has cancer—that requires removing and testing the abnormal-looking tissue. Instead, the AI examines mammograms for hints.

Christian Leibig, lead author on the study and director of machine learning at Vara, says that mammograms of healthy and cancerous breasts can look very similar, and both types of scans can present a wide range of visual results. This complicates AI training. So does the low prevalence of cancer in breast screenings (according to Leibig, “in Germany, it’s roughly six in 1,000”). Because AIs trained to catch cancer are mostly trained on healthy breast scans, they can be prone to false positives.

The study tested the AI only on past mammogram decisions and assumed that radiologists would agree with the AI each time it issued a decision of “confident normal” or “confident cancer.” When the AI was unsure, the study defaulted to the original radiologist’s reading. That means it couldn’t test how using AI affects radiologists’ decisions—and whether any such changes may create new risks. Töllner admits he spends less time scrutinizing scans Vara labels normal than those it deems suspicious. “You get quicker with the normals because you get confident with the system,” he says.

Click here to read the full article on MIT Technology Review.

Air Force Civilian Service

Air Force Civilian Service

Danaher

Danaher

Alight

Alight Solutions

Leidos